Segment No.: 04-09-05

WA-09-0010

CONCENTRATIONS OF POLYCYCLIC AROMATIC HYDROCARBONS IN SEDIMENT AND GROUND WATER NEAR THE WYCKOFF WOOD TREATMENT FACILITY, WEST SEATTLE, WASHINGTON

by James C. Cubbage

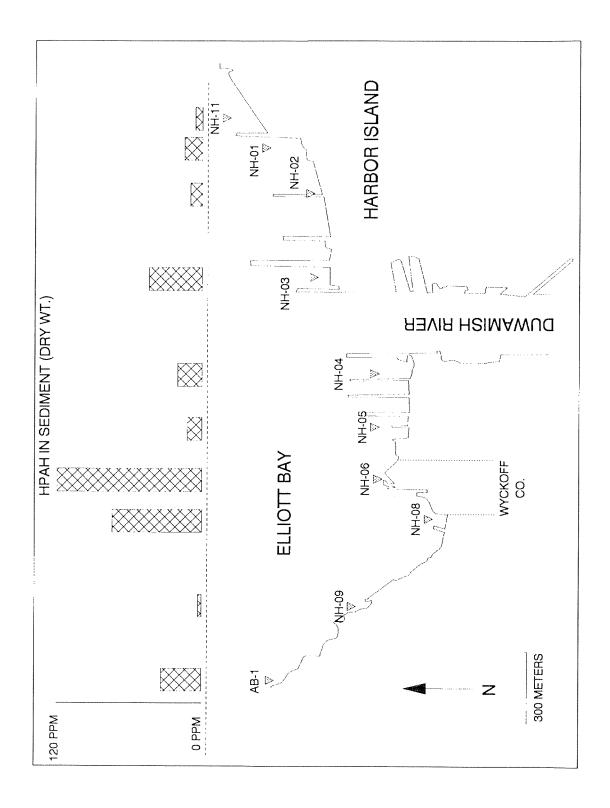
Washington Department of Ecology Environmental Investigations and Laboratory Services Toxics Investigations/Ground Water Montitoring Section Olympia, Washington 98504

August 1989

ABSTRACT

Recent sediment analysis in Elliott Bay, Washington, showed elevated polycyclic aromatic hydrocarbons (PAHs) near the Wyckoff wood treating plant. For this study, additional sediment samples were taken within 200 meters of the site to determine the distribution and severity of contamination. Relative abundance of individual high weight PAHs helped identify potential sources. Concentrations of metals (As, Cr, Cu, and Zn) associated with wood preservation were also examined. Comparatively high concentrations of PAHs were found in subtidal sediments near the Wyckoff facility (total PAHs at one location exceeded 1000 ppm dry weight). Concentrations increased toward the Wyckoff Company, implying this facility is the probable source of PAHs. Seven of 16 samples exceeded the highest Apparent Effects Threshold (AET), which indicates biological problems are likely to occur at the observed PAH concentrations. PAHs, pentachlorophenol, and high concentrations of metals were found in two monitoring wells onsite, indicating migration of wood preservative into the ground water.

INTRODUCTION


Background

Surveys for contaminants in Elliott Bay sediments were conducted for EPA in 1985 (PTI & Tetra Tech, 1988). Results of that comprehensive sampling effort showed an elevation in PAHs near the Wyckoff wood treating plant on the south shore of Elliott Bay (Figure 1). Sediment bioassays demonstrated that the high levels of PAH found near the site caused significant biological effects. Contamination of marine sediments and ground water by wood preservative chemicals has occurred at wood treating facilities located near tidewater in Eagle Harbor, Washington (Yake and Norton, 1986), and Pensacola, Florida (Goerlitz, et al., 1985). In addition to high concentrations of PAHs found in creosote (McNeil, 1959 in Merrill and Wade, 1985), wood treating employs other potential contaminants, including pentachlorophenol, copper, chromium and arsenic (in the formulation copper-chrome-arsenate: CCA), and zinc (Stranks, 1976).

To determine the extent and possible source of this contamination in Elliott Bay, the Northwest Regional Office (NWRO) of the Department of Ecology requested a thorough examination be conducted by the Environmental Investigations Program of the Department of Ecology. This report summarizes that investigation.

Goals and Strategy

The goal of this investigation was to determine the extent of contamination by PAHs and selected metals (As, Cr, Cu, Zn) near the Wyckoff facility. If the concentrations of these contaminants proved to be higher than local background levels, an additional goal was to determine if a link exists between elevated concentrations and operations at the Wyckoff facility.

HPAH is sediment along south shore of Elliott Bay near the West Waterway of the Duwamish River. Data from PTI and Tetra Tech Elliott Bay Action Program. Figure 1.

The Wyckoff facility was evaluated as a potential source of PAHs and metal contamination in two ways. The first was based on the premise that a source of contamination may be identified by evaluating gradients in sediment contamination. The presence of a gradient was investigated by sampling a set of stations adjacent to the shore (within 10 yards) and a second set of stations greater than 50 yards offshore. The second strategy relies on the examination of ratios of individual contaminants, in this case constituent high molecular weight PAHs, to identify probable sources (i.e., petroleum, creosote, combustion products). This type of analysis has been proven useful elsewhere (Lake, *et al.*, 1979; Sporstol, *et al.*, 1983). In the present study, two samples of creosote product and two samples of ground water were sampled to examine the relative amount of each aromatic series to discern possible sources for PAH.

METHODS

Reconnaissance Survey

To roughly discern hydrocarbon distribution in sediments and to aid in sample location selection, a reconnaissance survey was conducted near the Wyckoff facility on March 17, 1988. Thirty-one bottom grabs were taken around the perimeter of the site with a hand-hauled Petite Ponar grab sampler and the sediments were visually examined for oil sheen.

Sampling Survey

Based on the overall sampling strategy and results of the reconnaissance survey, 16 locations were chosen for sediment sampling on April 21, 1988 (Figure 2). From site 8 and site 14, two samples each were sent to the laboratory as blind duplicates. Sediment samples were collected with a 0.1 m² modified Van Veen grab. Positions were located through distances from landmarks measured with an optical range measurer. For each sample, sediments not in contact with the side of the grab were spooned from the top 2 cm, placed in a stainless steel beaker, and homogenized by stirring. Subsamples for metals, base neutral acid organics, and total organic carbon (TOC) analysis were then removed and placed in 8-ounce priority pollutant-cleaned jars with teflon-lined lids (obtained from ICHEM; Hayward, California). A separate small Whirl-pak was filled with sediment for grain size analysis. Tools (spoons, beakers) were decontaminated between samples using sequential washes with Alconox detergent, distilled water, 10 percent nitric acid, pesticide-grade methylene chloride, and acetone. Samples were collected in the order of anticipated increasing contamination based on reconnaissance survey data. All samples were held in coolers on ice until delivered the following day to the laboratory.

On May 6, water samples from the bottom of two monitoring wells (1A and 3) were collected with teflon bailers decontaminated through the rinse procedure described above. Well 1A is approximately 16 feet deep, with the bottom 10 feet screened. Well 3 is 18 feet deep with the bottom 5 feet screened. Water samples were placed in 2-liter priority pollutant-cleaned jars. Two samples of creosote product were also taken into 1-liter jars at the sampling spigot between the tanks and the retorts.

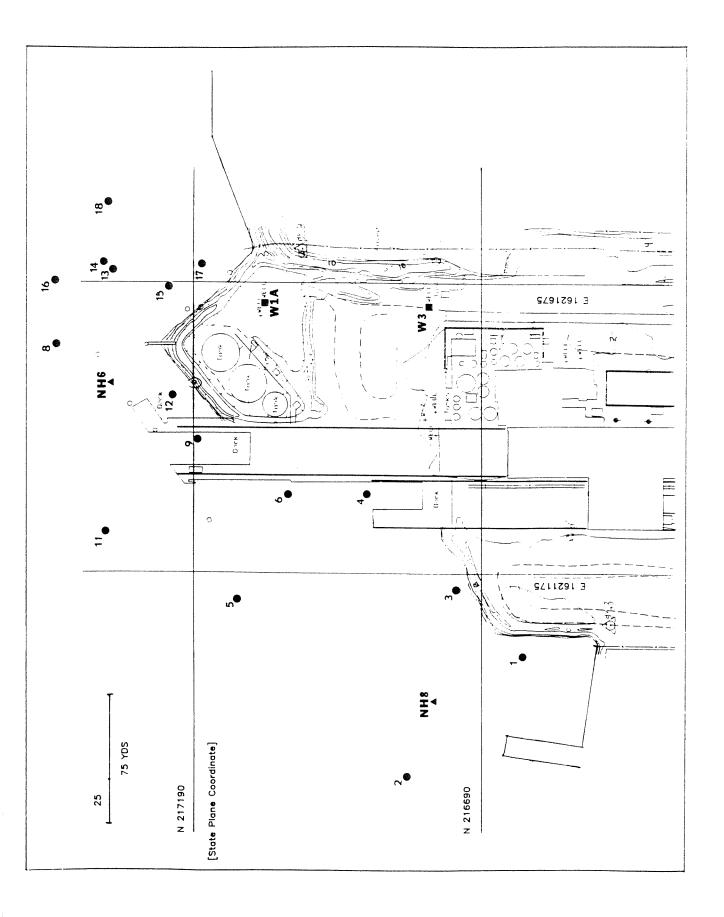


Figure 2. Location of study site and sample sites for sediments and wells (prefix "W").

Physical/Chemical Analysis

All samples were sent to the Department of Ecology/EPA Laboratory in Manchester, Washington. Aliquots for determination of semivolatile organics, grain size, and TOC were sent to Laucks Testing Laboratory in Seattle, Washington. Metals analyses were conducted at the Manchester Laboratory. Quality assurance review of the organics data was conducted by Ecology and Environment (consultants), Seattle, Washington. Field sampling methods adhered to Puget Sound Protocols (U.S. EPA; Tetra Tech, 1985).

Semivolatile organics in sediments were extracted by Method 3550 (sonication extraction; EPA, 1986) and analyzed by Method 8270 (capillary column gas chromatography with mass spectrometer detector; EPA, 1986). Internal standards used were those specified in the EPA Contract Laboratory Program(CLP)(EPA, 1984a), as well as 2 fluorobiphenyl, d14 p-terphenyl, and d10 pyrene. Although the methods used can detect pentachlorophenol, recovery can be relatively inefficient and detection limits can be high.

Semivolatile organics in water were extracted and analyzed by Method 625 (EPA, 1984b). Product was extracted by Method 3580 (EPA, 1986) (waste dilution method) and analyzed by Method 625. TOC was measured by persulfate-UV method (APHA, 1985). Grain size was measured with sieves and pipettes (Holme and McIntyre, 1971).

For metals analysis, sediments were digested using nitric acid and hydrogen peroxide, as specified in EPA Method 3050 (EPA, 1986). Copper, zinc, and chromium were analyzed on an inductively coupled plasma spectrophotometer using EPA Method 200.7 (EPA, 1982). Arsenic was analyzed on an atomic absorption spectrophotometer using Method 206.5 (EPA, 1983).

Ouality Assurance

To determine precision and, to some degree, accuracy of the analytical methods, one sediment sample was divided into three subsamples. Two of these subsamples were spiked in the laboratory with known concentrations of target metals and organics, and all three subsamples analyzed. In addition, two samples were homogenized and split in the field. These samples were placed in separate jars, labeled, and submitted to the laboratory as blind duplicates.

Results of these tests of precision and accuracy follow. Table 1 reviews measurements of precision of the organics and metals analysis. Field and laboratory duplicates of all analyses had acceptable precision, as measured by relative percent difference between duplicates. Table 2 shows matrix spike recovery of selected semivolatile organics. EPA Contract Laboratory Program (CLP)(EPA, 1984a) provided guidelines to acceptable results for matrix recoveries. All recoveries were within quality control limits. Table 3 shows similar tests for metals. Arsenic and chromium were within control limits. Copper was not recovered within limits and the relative percent difference was high (200 percent). The differences within field duplicates for this metal were acceptably low (Table 1), but spike recovery was poor and, consequently, copper results are flagged with an "E" to denote they are estimated values only. Zinc had poor recovery on one matrix spike and results are similarly flagged.

Results of blind field and laboratory duplicate analysis. Field duplicates were submitted to the laboratory as separate blind samples. Laboratory duplicates were mixed and split in the laboratory. Table 1.

		Fi	eld Du	Field Duplicates				Labora	tory D	Laboratory Duplicates		
	Conc. ug/kg	/kg d.wt.	RPD*	Conc. ug/kg	kg d.wt.	RPD	Conc. ug/kg	kg d.wt.	RPD	Conc. ug/kg	'kg d.wt.	RPD
Field Number Lab number	W7 188136	W8 188137		W14 188143	W19 188148		W5 18134MS	W5 188134MSD		W17 188146MS	W17 188146MSD	
CHEMICAL Acid/Base/Neutrals		0		1 0012	I. 0079	27	450 U		t ì	3100 J	2500 J	21
Dibenzofuran ?-methvlnanhthalene	840 300 J	910 J 340 J	13		55000 U	1 1	44 J		43	1600 J	1000 J 2600 J	35
Naphthalene	1000	1100	10	12000 J	22000 J 55000 U	65 -	79 J 22 J	30 3	31			:
Acenaphthylene	1300		0 0	r 0069	9400 J	31			1 0	37000 U	34000 U	1 1
Acenaphenene Fluorene	1100	1200	6	6700 J	9200 J	31	170 J	240 J 750	7 7	37000 U		29
Phenanthrene	4500	5200	14	27000 J	31000 J	27	310 J	350 J	12			12
Anthracene	2100 10500 J	10600 J	, —	84600 J	63600 J	10	1260 J	1470 J	15	34700 J	31400 J	10
		:	(00070	ر. بر	1300	1500	14	41000	32000 J	25
Fluoranthene	0009		71	120000	12000	0.50	450 U	450 U	i			1 1
Pyrene	14000 K	15000 K	` [130000	72000	57	550	930	51		16000 J	οī
Benzo (a) anthracene	3000	5500	34	110000	80000	32	250	740	56			15
Chrysene bornefluoranthenes	11000	10000	10		00086	56	640 J	920 J	36	10000	9500 3	
Benzo (a) pyrene	4200	4900	15	47000 J	39000 J	19	290 J 88 J	380 J 110 J	22			S
Indeno (1,2,3-cd)	1600	1900	1/			5						
perylene Dibenzo (a.h) anthracene		420 J	6			1 (450 U	450 U	70	37000 U	34000 u	. 9
Benzo (g,h,i) perylene	1300 46500 J	1500 49700 J	14 7	15000 J 771000 J	11000 J 515000 J	31 40		4690 J	29	123000 J	109000 J	12
	•											
Metals	7.7	5.2	39	14.8	14.0	9						
Chromium	28.7	23.6	20	69.4	72.6	νõ						
Copper ,	56.0 106.0	96.0	10	298.0	304.0	2						
								`	,	11111	1	

^{*} RPD = Relative percent difference = ((x-y)/(x+y/2))*100 where x and y are replicate analyses (excludes "U" values). ** Sum excludes "U" values and are, thus, mimimums, LPAH sum excludes 2-methylnapthalene.

Qualifiers:
 J = Estimate: chemical found but at less than Contract Required Detection Limit
 U = Estimated sample quantitation limit (compound not found above this concentration)
 R = Values from diluted injection (initial injection was unacceptable)

Quality assurance results showing percent recovery of matrix spikes (MS) and matrix spike duplicates (MSD) of selected semivolatile organics. Organic spike was added to samples numbers shown below at concentrations between 180 and 375 ppm. Table 2.

		Per	Percent Recovery	overy			*RPD	
Lab number = Chemical	188134 MS	188134 MSD	188146 MS	188146 MSD	QC Limits (Min-Max)	188134	188146	188146 QC Limits
Phenol	51	67	57	57	26-90	7	0	35
2-Chlorophenol	52	67	63	65	25-102	9	т	50
1,4-Dichlorobenzene	56	51	59	61	28-104	6	М	27
N-Nitroso-di-n-prop.	55	54	69	63	41-126	2	6	38
1,2,4-Trichlorobenzene	59	54	29	99	38-107	6	7	23
4-Chloro-3-methylphenol	67	99	74	7 9	26-103	2	14	33
Acenaphthene	63	62	63	29	31-137	2	9	19
4-Nitrophenol	49	72	52	51	11-114	7	2	50
2,4-Dinitrotoluene	56	54	57	62	28-89	7	∞	47
Pentachlorophenol	83	82	65	99	17-109	H	7	47
Pyrene	54	65	09	63	35-142	18	Ŋ	36

*RPD = Relative percent difference = ((x-y)/(x+y/2))*100 where x and y are replicate analyses.

Table 3. Quality assurance results showing percent recovery of matrix spikes (MD) and matrix spike duplicates (MSD) of metals.

		Per	cent Re	ecovery		*]	RPD
	188138 MS	188138 MSD	188146 MS	188146 MSD	QC Limits (Min-Max)	188138	188146
Arsenic	92	77	81	78	65-135	18	4
Chromium	90	93			65-135	3	-
Copper	0	15			65-135	200	-
Zinc	110	151			65-135	31	_

^{*}RPD = Relative percent difference = ((x-y)/(x+y/2))*100 where x and y are replicate analyses.

Results of the organics quality assurance review showed the data are acceptable for use except where flagged with data qualifiers which modify the usefulness of the individual values. GC/MS tuning, initial calibration, continuing calibration, and surrogate recovery all were within CLP requirements. The most common reason for flagging organics data is that compounds were found and quantified at concentrations below the contract required quantitation limit (CRQL) (reported concentrations have been corrected for dilutions and percent moisture). The flag for this case is "J". CRQL is 330 ug/kg for most organics in low level analyses before correction for percent moisture and dilutions. Medium level analysis, used for highly contaminated areas, has a CRQL of 19,800 ug/kg.

RESULTS AND DISCUSSION

Grain Size and TOC

Table 4 shows TOC and grain size distribution of sediments. Sediments were primarily sandy (40-90 percent) with varying (8-50 percent) amounts of silt. Four samples had slightly more silt than sand. The clay fraction was relatively small. TOC ranged from 0.7 to 9.4 percent.

Semivolatile Organics

Table 5 shows concentrations of all semivolatile target compounds found above detection limits in the sediments surrounding the Wyckoff facility. Target compound detection limits are shown in the Appendix. The primary compounds detected were polycyclic aromatic hydrocarbons (PAHs). Diethylphthalate and dibenzofuran were also quantified. Two other phthalates were found, but because they were also found in method blanks, results are flagged in the table with a "B."

Table 6 reports results from monitoring wells 1A and 3, as well as PAH constituents found in product (creosote) used at the site. In ground water samples, the primary contaminants were PAHs. Phthalates were detected in method blanks; thus, concentrations found in samples may reflect laboratory contamination. Earlier sampling during drilling of monitoring wells on the Wyckoff site found PAHs and chlorophenols in well corings (Woodward and Clyde, 1985). In this study, pentachlorophenol was detected in one well.

PAH concentrations in sediments varied greatly between sites. Sample 13 had the highest concentration of PAHs, at over 0.1 percent total PAHs on a dry weight basis. The adjacent sample (14) also had high PAHs. Figure 3 portrays concentrations of total PAHs by location. Exceptionally high levels of PAHs were also found underneath the barge offload area (sample site W-9) where treated poles are loaded onto barges. High concentrations were also found in samples adjacent to the northeast border of the Wyckoff property. These sites are all within approximately 50 yards of the shore and 75 yards of the creosote tanks on the Wyckoff property. Generally, sites in deeper water (over 30 feet deep) or more distant from the creosote tanks had lower levels.

Table 4. Sediment characteristics (percent total organic carbon (TOC), percent sand (>62um), silt (<62um >4um) and clay) at Wyckoff subtidal sample sites.

		Percen	it	
SITE	TOC	Sand	Silt	Clay
W1	2.4	64.6	30.2	5.2
W2	2.3	58.6	32.7	8.7
W3	2.4	67.7	27.3	5.0
W4	0.7	90.2	7.8	2.0
W5	0.9	89.4	8.8	1.8
W6	2.2	88.9	9.5	1.6
W7	2.6	61.0	31.8	7.2
W9	4.0	68.0	28.0	4.0
W11	1.5	71.9	22.1	6.0
W12	1.1	78.5	18.3	3.2
W13	9.3	46.5	47.4	6.1
W14	7.7	42.6	49.4	8.0
W15	5.0	69.5	26.9	3.6
W16	5.5	39.8	48.4	1.8
W17	2.8	73.2	22.5	4.3
W18	9.4	41.1	49.7	9.2

All values in Summary of semi-volatile organics compounds defected in surface sediments collected near Wyckoff Company in Elliott Bay, WA. ug/kg dry weight. Table 5.

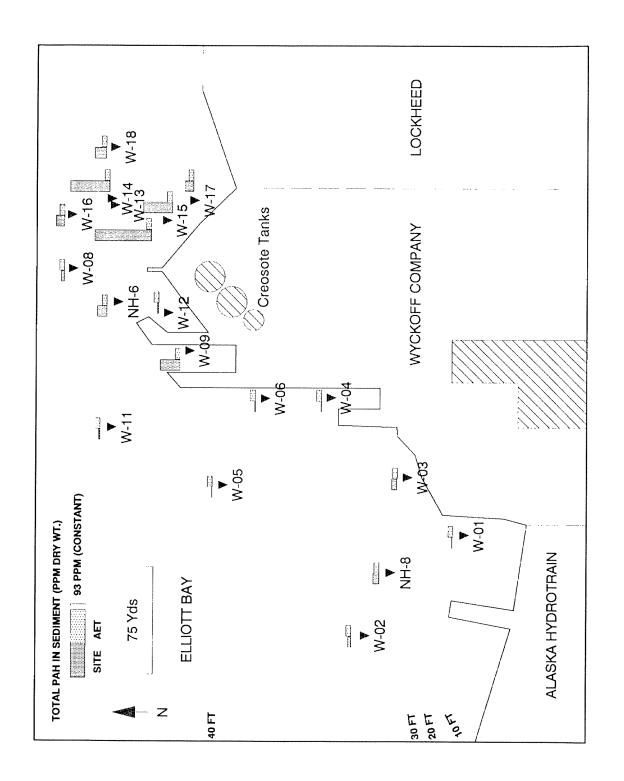
Station number Lab number	W1 188130D	W2 188131	W1 W2 W3 188130D 188131 188132D 18	W4 188133	S *	W6 188135	∞ * ≭ *	W9 188138	W11 188140	W12 188141	W13 188142	W14 **	W15 188144	W16 188145	W17 *	W18 188147
Acid/Base/Neutrals bis(2-Ethylhexyl)phthalate Diethylphthalate	1900B	250B 140J	890B	94B	78B	160B	110B	6500B	130B	140B	9200B	l	6600B	570B	4267B	630B
Dibenzofuran Dibenzofuran 2-methylnaphthalene	150J	610J 260J	1700J 1000J	160J	180J 50J	1503	875J 320J	20003	350J 190J	300J	14000J		90000	10001	43335 3200J 1300J	2700J 1300J
Naphthalene Acenaphthylene	94J	260J 570J	1600J 310J	160J 100J	88J 25J	150J 160J	1050 390J	3500J	530 350J	450J 340J	33000J		100001	1800J	44333	4900 2400J
Acenaphthene Fluorene	220J 260J	780J 1200J	2200J 2700	220J 230J	240J 227J	180J 230J	1300	20003	410J 590	420J 410J	20000J 19000J		5600J 7400J	1800J 1700J	45003	5000
Phenanthrene Anthracene Sum LPAH***	1900J 400J 2960J	6000 2800 11600J	13000 9800 29600J	1400 840 2950J	777 313.1 17005	1500 680 2900J	4850 1800 10500J	10000J 7500J 23000J	2200 2400 6480J	2200 1300 5120J	60000 48000J 180000J	29000J 25500J 90600J	23000J 28000J 74000J	9200 9200 23700J	12900J 16333J 42200J	21000 15000 53500J
Fluoranthene Pyrene Benzo (a) anthracene Chrysene Benzofluoranthenes Benzo (a) pyrene Indeno (1,2,3-cd) perylene Dibenzo (a,h) anthracene Benzo (g,h,i) perylene Sum HPAH	2800 2300J 1300J 1400J 2700J 1200J 570J 610J	9900 8000 5200 5500 9700 4200 1500 460J 1100J	16000 13000 7200 7500 10700 4800 1400.1 450J 1300J	2400 870J 1300 1500 580J 260J 200J 8810J	1333 1300 737 637 790J 330J 103J 105J	3900 2500 1700 1600 2650 910 330J 110J 250J	5950 5300 4700 10500 4550 1750 1400 1400	110000 94000 43000 30000J 45000J 16000J 6700J 350000J	2100 2900 2300 1800 6200 2100 1700 470J 1400	2500 4000 2500 1900 7300 2400 1000 320J 890	260000 160000 120000 120000 130000 13000J 13000J 868000J	102000 160000 101000 95000 112500J 43000J 16500J 13000J 643000J 643000J	88000 120000 73000 71000 65000J 24000J 9700J 457000J	17000 16000 19000 29000 30000 13000 3900J 1400J 132000J	36333 7667J 18000J 27000J 24367J 10500J 2767J 3600J	24000 27000 23000 31000 38000 16000 5000 1900J 3800J

Mean of 3 analyses (matrix, matrix spike, and matrix spike duplicate, except for Acenaphtene and Pyrene, the two spiked PAH compounds)
Mean of 2 blind field duplicates
Excludes 2-Methylnapthalene * *

Data Qualifiers

B = Chemical found in method blank

J = Estimate due to concentration less Contract Required Defection Limit


R = Data from diluted re-injection (initial injection unacceptable)

Concentrations of PAHs in well water and creosote from the Wyckoff facility in West Seattle. Only those compounds quantified are shown. Table 6.

	ug/1 (ppb)	(qdd	mg/l (ppm)	(mdd)
Field Number Lab number	Well 1A 97551	Well 3 97552	CRE01 CRE 97554 975 (Creosote)	CRE02 97555 sote)
Acid/Base/Neutrals bis(2-Ethylhcxyl)phthalate Pentachlorophenol	25JB	80B 160	290B	280B
Dibenzofuran	530	53	26000	25000
2-methylnaphthalene	54J	11	00099	29000
Naphthalene Acenanhthylene	110J	150	22000	22000
Acenaphthene	610	76	35000	1500J 34000
Fluorene	940	75	27000	25000
Phenanthrene	1900	270	000019	000099
Anthracene	1000	43	22000U	22000U
Sum LPAH*	4560	632	85500	82500
Fluoranthene	1000	220	35000	37000
Pyrene	520	190	26000	24000
Benzo (a) anthracene	160	65	0099	6100
Chrysene	210	99	00/9	6400
	108J	57J	45003	4200J
Benzo (a) pyrene	423	28J	2100J	1900J
Indeno (1,2,3-cd) perylone Benzo (e.h.i) nerylone		10J	530J	480J
Sum HPAH	2040	644	380J 81810	340J 80420

^{* =} Excludes 2-methylnapthalene and "U" values
B = Chemical found in method blank
J = Estimate due to concentration less than Contract Required Detection Limit

U = None found at detection limit shown

Concentrations of total polycyclic aromatic hydrocarbons (PAH) in sediment compared with the Amphipod Apparent Affects Threshold (see text for explanation of Apparent Effects Threshold). Figure 3.

Correlations between grain size distribution and PAH and metal concentrations are presented in Table 7. Total PAH correlates strongly with percent TOC. Non-polar compounds such as PAHs would be expected to sorb more readily to other carbonaceous compounds in the sediment. Also, because PAHs are organic compounds, they may have similar sources and sinks as TOC. To reveal possible patterns of PAH distribution, concentrations were normalized to percent TOC and isoconcentration lines were modeled with a kriging algorithm, plotted and shown in Figure 4. Though these contours are models and are not strictly descriptive of the concentrations found in all sediments, they do illustrate areas of highest contamination. These areas are to the northeast and northwest (Figure 4) of the Wyckoff creosote tanks and suggest, through their close proximity, a source in the vicinity of the creosote tanks. However, a spill might have contributed to high concentrations, as creosote is loaded by barge to the Wyckoff facility off the docks on the north side of the site.

Constituents Identification

Figure 5 shows relative concentrations of high molecular weight PAHs plotted on a site map. The characteristic profile of creosote is shown and clearly matches samples from onsite wells, thus providing some evidence that PAHs sampled in these wells derive from creosote. Samples W-9 and W-13 are more similar to these profiles than to background profiles (upper left corner of figure), with high relative concentrations of fluoranthene, moderate concentrations of benzo-anthracene, and low levels of benzo-fluoranthene. Sites W-2, W-1, W-8, and W-11 match background profiles as shown in the legend. These are indicated by relative enrichment of benzo-fluoranthenes. Other sites are intermediate between background and creosote. Different solubilities and degradation rates of different PAHs, as well as variation in the accuracy of laboratory analysis, may confound this type of analysis. However, patterns seen here appear to be consistent with the hypothesis that creosote from the Wyckoff facility is responsible for elevation of PAH concentrations in sediments adjacent to the facility.

Metals

Metals concentrations in sediments and monitoring well water are listed in Table 8. All metals values in sediments co-varied with each other. Samples W-1, W-9, and W-17 had the highest concentrations. These sites are adjacent to the Wyckoff facility. W-1 is near an 18-inch diameter storm sewer outfall that drains Seattle Steel and receives ground water infiltration from Harbor Island landfill (D. Cargill, Department of Ecology, 1988). Arsenic is found at relatively high concentrations near the site and to the northwest of the site at the outer tier of samples.

Arsenic concentrations correlated with total PAH, percent TOC, and percent fines (P = .05; see Table 7). If arsenic is corrected for TOC, levels are highest on the east side of the site. If arsenic is corrected for percent fines, most of the arsenic is found to the northwest of the site. All four metals were found in monitoring well samples. Metals concentrations found in ground water were high, suggesting some leachate from treated timbers stored on site.

Table 7. Pearson correlation coefficients between concentrations and properties of soils (silt < 62um and > 4um, clay <4um, TOC = Total organic carbon, TOTPAH = total polycyclic aromatic hydrocarbon).

	Silt	Clay	TOC	тотран	AS	CR	CU
Clay TOC	0.864** 0.860**						
TOTPAH	0.601+	0.196	0.794**				
AS	0.733*	0.493	0.677*	0.533+			
CR	0.667+	0.437	0.660+	0.483	0.913**		
CU	0.404	0.197	0.321	0.286	0.861**		
ZN	0.677*	0.447	0.573	0.446	0.942**	0.825**	0.904**

⁺ p<0.05

^{*} p<0.005 ** p<0.001

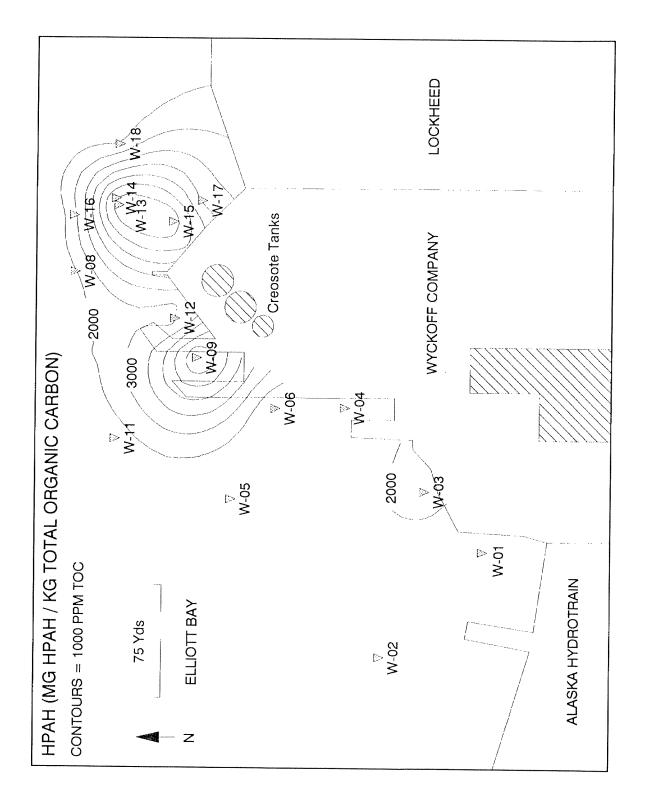
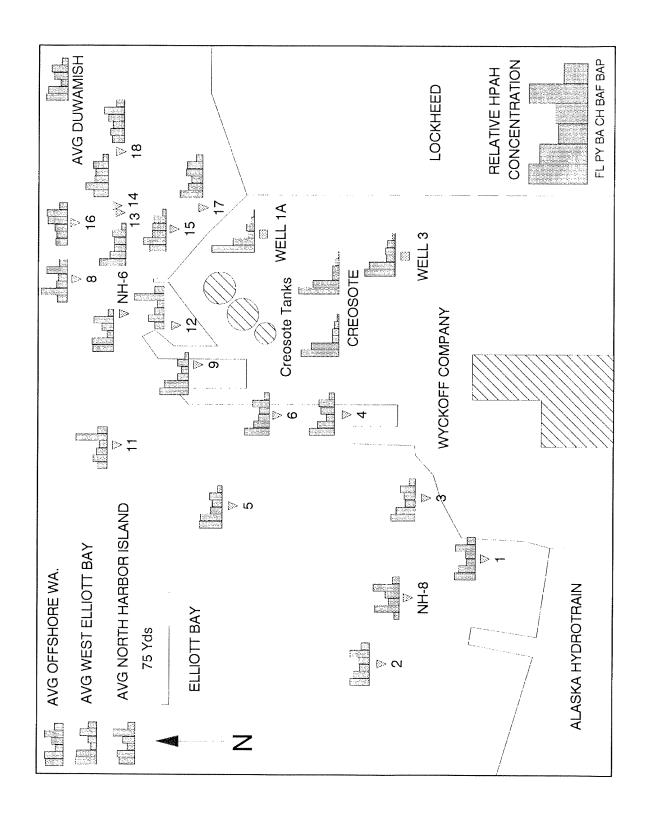



Figure 4. High molecular weight PAH concentrations in sediments modelled through Kriging near the Wyckoff facility.

Relative concentrations of high molecular weight PAH concentrations in sediments, wells, and product. Bars represent individual HPAH compounds as a percentage of total HPAH concentrations for each site. (FL=Fluoranthene, PY=Pyrene, BA=Benzo-Anthracene, CH=Chrysene, BAF=Benzo-a-fluoranthene, BAP=Benzo-a-pyrene). Figure 5.

Table 8. Metals concentrations in subtidal sediments and well water, Wyckoff facility, Elliott Bay.

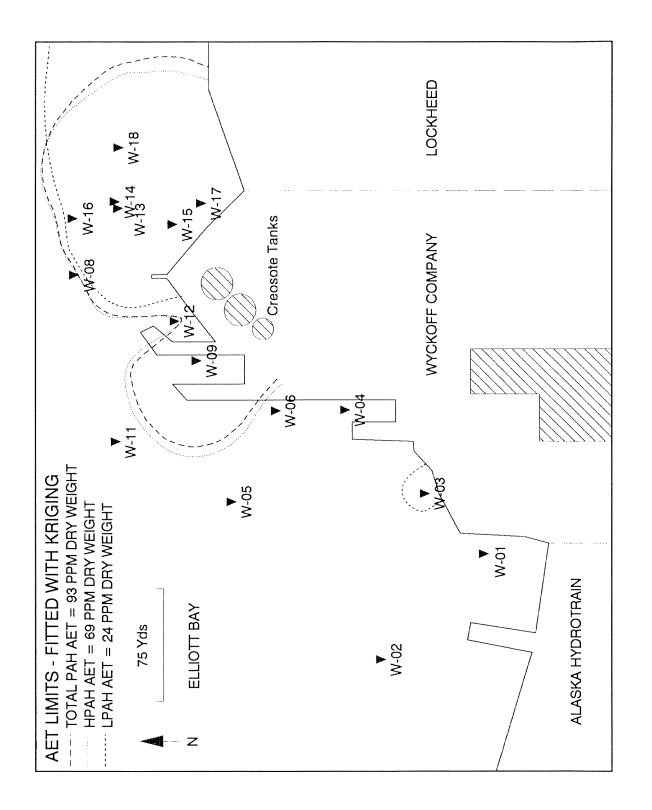
	Conc	entration	ug/g d	ry wt
SITE	AS	CR	CU	ZN
Wl	14.6	77.3	31 9E	345E
W2	7.6	33.2	111E	204E
W3	7.9	46.2	197E	248E
W4	2.8	11.1	37E	81E
W5	3.0	7.3	21E	56E
W6	2.3	13.3	35E	64E
W7	6.5	26.2	55E	101E
W9	14.5	38.8	355E	342E
W11	4.9	22.5	65E	112E
W12	5.4	22.1	52E	183E
W13	12.6	68.4	152E	252E
W14	14.4	71.0	181E	301E
W15	10.6	61.7	149E	232E
W16	12.1	54.5	155E	263E
W17	15.3	97.1	266E	279E
W18	14.4	83.2	170E	299E
		Concentra	ation u	g/1
Well	la 46	-	150E	97E
Well	3 385	145	1140E	1860E

E = Estimate due to failure of one or more quality control tests

Biological Effects

Toxicity criteria for marine sediments have been developed using data from contaminant analyses and bioassays, interpreted with the Apparent Effects Threshold (AET) principle (PTI, 1988). Simply stated, the AET for a given contaminant is the level above which deleterious biological effects are always seen. These biological effects are measured by four parameters: amphipod, oyster larvae, microtox bacteria bioassays, and benthic species abundance. Each method yields a separate AET estimate. All determinations are controlled through measurements at areas distant from industrial activity and contamination. Data from 50 to 200 stations in Puget Sound are available to assay AET levels for most priority pollutants. Table 9 shows the AET concentrations for chemicals found in this study. Clearly, several sites exceeded the highest AET for PAHs, as illustrated earlier in Figure 3. A model of the areal distribution of sediments that exceeded the highest AET is shown in Figure 6. Metals concentrations did not exceed AETs.

Comparison to Other Areas


Concentrations of PAHs in sediments found in this study exceed all but one site reported in several other studies in Puget Sound. Table 10 compares median, 90th percentile, and maximum concentrations from other studies with concentrations found in this study. Analyses of 170 to 210 Puget Sound sediment samples are reviewed in the Pollutants of Concern Matrix (Tetra Tech, 1986a). Results are divided into relatively unpolluted and more contaminated areas. The more contaminated areas are referred to in the Matrix and in Table 10 as "non-reference" areas. Samples from Elliott Bay and Eagle Harbor (an EPA designated "Superfund" site; n = 131), reported after the Matrix was published (Tetra Tech, 1988; Tetra Tech, 1986b), are also compared to Wyckoff samples in Table 10.

Median concentrations at Wyckoff exceed the 90th percentile for 13 of 14 PAHs measured at all other sites. Minimum concentrations found in this study exceed the median for other areas for 10 of 15 PAHs. Note that sites which form the comparison are not "pristine" or control sites. They are urban sites located near multiple sources of contamination. Table 11 shows the 15 sites from this study, Eagle Harbor, and Elliott Bay that have the highest concentrations of total PAHs. Of the 15, nine are located near the Wyckoff facility in Elliott Bay.

Puget Sound Apparent Effects Threshold (AET) concentrations in sediments of semi-volatile organics (ug/kg normalized to dry weight) and metals (mg/kg normalized to dry weight) compared to concentrations found in sediments near Wyckoff Company. Source: PTI, 1988. Table 9.

	,	AF	AET					
Chemical	Amphipod	0yster	Benthic	Microtox	Wyckoff	ff Sedi	Sediment Samples	səlc
					Geo. Mean	Range	High	Exceed AET*
Acid/Base/Neutrals								
Dibenzofuran	1700	540	700	240	850	150	14000	'n,
2-methylnanhthalene	1900	670	1400	670	392	20	7700	
Nanhthalone	2400	2100	2700	2100	1189	88	33000	9
Acenarhthylene	1300	>560	1300	>560	285	25	3000	C 1
Acception	2000	500	730	500	1254	180	20000	9
Fluctions	3600	540	1000	540	1403	227	19000	2
Dhonanthrone	0069	1500	5400	1500	6267	777	29000	æ
Anthropono	13000	096	4400	096	4101	313	28000	Ŋ
Sum LPAH**	24000	5200	13000	5200	15115	1670	180000	5
Ular State Board	30000	25000	24000	1700	12991	1333	260000	7
Distore	16000	3300	16000	2600	12877	1300	160000	7
ryrene Danae (a) anthracene	5100	1600	5100	1300	8275	737	120000	10
Senzo (a) antinacene	9216	2800	9200	1400	8487	637	120000	7
Donostinomonthones	7800	3600	0066	3200	12765	790	130000	6
Benzo (a) purene	3000	1600	3600	1600	5015	330	46000	7
Tadeno (1 2 3-cd) nervi	1800	069	2600	009	1971	103	19000	7
Dibenzo (a h) anthracene		230	970	230	502	110	1900	7
Bongo (a h i) porvione	,	720	2600	670	1605	105	13000	7
Sum HPAH**	00069	17000	00069	12000	86899	5335	868000	7
Metals				,	,	(c L	C
Arsenic	93	700	57	700	7.9	2.3	15.3)
Chromium	270	1	260	i	36.1	7.3	97.1	0 (
Copper	1300	390	530	390	108.4	21.0	355	o (
Zinc	096	1600	410	1600	181.5	56.0	345	0

**Sums are calculated by site; they are not totals of values in this table * Number of samples that exceeded highest AET value.

Amphipod Apparent Affects Threshold borders modelled through Kriging near the Wyckoff facility based on sediment samples. Figure 6.

Comparison of concentrations of several chemicals found in sediments near the Wyckoff Facility in West Seattle with concentrations in other areas of Puget Sound. Table 10.

	Elliott B	bay and tag	ragie narbor	Luon	Non-Keierence	Area	Wyckoff	Sediment	Samples
Chemical	Median	90th Percentile Maximum	Maximum	Median	90th Percentile Maximum	Maximum	Minimum	Median	Maximum
Acid/Base/Neutrals (sediment	ug/kg dry	weight)							
Dibenzofuran 2-Methvlnabhthalene				130	380	2000	150* 50	745**	14000
Naphthalene	42	810	15000	200	1200	2300	88	1325**	33000
Acenaphthylene	15	1400	37000	99	350	4000	25	130	3000
Acenaphthene	14	009	33000	7.1	760	3300	180*	**066	20000
Fluorene Dhomanthrono	52	3300	37000	91	1300	34000	227*	1450**	19000
Ant bracene	770	2600	190000	110	530	0905	313%	5150**	28000
LPAH	1310	8900	0000089	850	4400	22000	1670*	17305**	180000
Fluoranthene	1200	0076	1300000	530	2300	71000	1333*	13000**	260000
Pyrene	1200	7600	740000	630	2200	63000	1300*	10500**	160000
Benzo(a)anthracene	220	3100	300000	530	2300	71000	/3/×	650088	120000
Curyseme Total benzofluoranthenes	000	7700	30000	420 710	3600	29000	×062	10100**	130000
Benzo(a)pyrene	390	3200	100000	350	1700	23000	330	4675**	46000
Indeno(1,2,3,c,d)pyrene	230	1800	40000	170	840	9100	103	1725**	19000
Dibenzo(a,h)anthracene	17	710	12000	52	450	4000	110*	1 6	1900
Benzo(g,h,i)perylene HPAH	180 5900	1500	320000 3200000	180 3400	1300 17000	11000	105 5335*	1400** 54970**	13000 868000
Metals (sediment mg/kg dry wt)	(;								
Arsenic	9.6	36.2	584	11.0	39.0	9700	2.3	9.2	
Copper	77.8	194 248	1080 2050	55.0	90.06	11000	21.0	150.5**	355
71nc	35.4	27.8	300	77.0	21.0	170	20.00	740.0%	

* Minimum at Wyckoff exceeds median for for all Elliott Bay, Eagle Harbor, and Puget Sound non-reference areas. ** Median at Wyckoff exceeds 90th percentile for all Elliott Bay, Eagle Harbor, and Puget Sound non-reference areas.

Notes: Eagle Harbor is on EPA's designed "Superfund" site. Non-reference areas refer to sites in Puget Sound that are considered highly contaminated and are not included in the Elliott Bay and Eagle Harbor sites summarized here. Sources (Elliott Bay: PTI and Tetra Tech (1988), Eagle Harbor: Tetra Tech, 1986b (n=131); Non-reference areas: Tetra Tech 1986a (n=25-30).

Table 11. Sediment sites within Eagle Harbor and Elliott Bay, ranked by concentration of Total PAH (TPAH). Highest 15 out of 147 sites are shown. Boldface values are for sites adjacent to the Wyckoff facility.

		mg/kg	mg/kg dry wt.(ppm)	t.(ppm	
Study(1)	Site	I.PAH	ньян	TPAH	Location
Elliott Bay	SS-08	630	3200	3830	Seattle south waterfront
This study	W13	180	898	1048	NR of Wyckoff site
This study	W14	83	643	732	NR of Wyckoff site
This study	W15	74	457	531	NE of Wyckoff site
This study	6M	23	350	373	Under transfer area
Eagle Harbor	EH-08	128	118	246	Center of Eagle Harbor
This study	W18	53	170	223	NE of Wyckoff site
This study	W17	42	147	189	NE of Wyckoff site
Elliott Bay	90-HN	57	128	185	Near Wyckoff (Elliott Bay)
This study	W16	23	132	156	NE of Wyckoff site
Eagle Harbor	EH-10	23	108	131	Near creosote treating site
Elliott Bay	8S-09	16	102	118	Seattle south waterfront
Elliott Bay	80-HN	37	79	116	Near Wyckoff (Elliott Bay)
Eagle Harbor	EH-19	32	83	115	Near ferry shipyard
Elliott Bay	90-SS	24	77	101	Seattle south waterfront

(1)Study Elliott Bay: PTI and Tetra Tech 1988 Eagle Harbor: Tetra Tech 1986b

CONCLUSIONS

- Very high concentrations of polycyclic aromatic hydrocarbons (PAHs) were found in sediments near the Wyckoff facility (total PAHs at one location exceeded 1000 ppm dry weight).
- Seven of 16 sample sites near the facility exceeded HPAH concentrations that can cause biological damage (as determined by comparison to highest AET).
- Concentration gradients point to Wyckoff Company (a wood treating facility) as the probable source of sediment PAHs contamination.
- Presence of PAHs and pentachlorophenol in samples from monitoring wells onsite indicate contaminants have reached the ground water.
- Comparison of relative abundance of PAHs in creosote with those in sediment and ground water onsite suggests that creosote is a source of much of the PAH found these media.

RECOMMENDATIONS

The Wyckoff site has been used for wood treating for over 50 years. It is unclear whether the contamination measured in this study is from current or historical sources. Based on the relatively high concentrations of PAH found in the environment adjacent to the Wyckoff site, the following recommendations are offered:

Clarify magnitude of ongoing contamination:

- Determine, through seepage meters and/or coring, if the high concentrations of PAHs northeast of the Wyckoff Site are caused by an ongoing seep.
- Test nearby sediments for pentachlorophenol with a more sensitive technique (EPA Method 8120).

Minimize possible ongoing sources of contamination:

- Test creosote tanks for leaks.
- Contain drips, spills, and leachate near the pole transfer area (site 9).
- Cover all areas that contain creosoted or CCA treated wood to minimize ground water contamination runoff to the bay.
- Plan response to possible spill while product is loaded into tanks.

Remediate past contamination:

• Determine feasibility of remediation of the contaminated sediment northeast of the site.

REFERENCES

- American Public Health Association (APHA), 1985. Standard methods for the examination of water and wastewater. 16 ed. Washington, DC 1,268 pp.
- EPA, 1983. Methods for chemical analysis of water and wastes.
- EPA, 1982 Test method: Inductively coupled plasma-atomic emission spectrometric method for trace element analysis of water and wastes method 200.7. Environmental monitoring and support laboratory, Cincinnati, OH 45268.
- EPA, 1984a (Revised 1987). U.S. EPA contract laboratory program of work for organics analysis, multi-media, multi-concentrations. IFBWA 85 = T-176, T-177, T-178, U.S. EPA, Washington, D.C.
- EPA, 1984b. Guidelines establishing test procedures for the analysis of pollutants under the Clean Water Act; final rule and interim rule and proposed rule. Federal Register 49 (209):1-210.
- EPA, 1985. Puget Sound Protocols. U.S. EPA Region 10, Seattle, WA.
- EPA, 1986. Test methods for evaluating solid waste, Laboratory manual physical/chemical methods. Office of Solid Waste and Emergency Response, Washington DC SW-846.
- Goerlitz, D.F., D.E. Troutman, E.M. Godsy, and B.J. Franks. 1985. Migration of wood-preserving chemicals in contaminated groundwater in a sand aquifer at Pensacola, Florida. Environ. Sci. Technol. 19:955-961.
- Holme, N.A. and A.D. McIntyre, 1971. Methods for the study of marine benthos. Blackwell Scientific Publications, London, UK 334pp.
- Lake, J.L., C. Norwood, C. Dimock and R. Bowen. 1979. Origins of polycyclic aromatic hydrocarbons in estuarine sediments. Geochim. Cosmochim. Acta 43:1847-1854.
- Merrill, E.G. and T.L. Wade. 1985. Carbonized coal products as a source of aromatic hydrocarbons to sediments from a highly industrialized estuary. Environ. Sci. Technol. 19:597-603.
- PTI 1988. Briefing report to the EPA Science Advisory Board: The apparent effects threshold approach. Prepared by PTI Environmental Services for U.S. EPA Region 10, Seattle, WA 98101.
- PTI and Tetra Tech, 1988. Elliott Bay Action Program: Analysis of toxic problem areas. Prepared for U.S. Environmental Protection Agency. Region X, Seattle.
- Sporstol, S., N. Gjos, R.G. Lichtenthaler, K.O. Gustavsen, K. Urdal, F. Oreld, and J. Skel. 1983. Source identification of aromatic hydrocarbons in sediments using GC/MS. Environ. Sci. Technol. 17:282-286.

- Stranks, D. W. 1976. Wood preservatives: Their depletion as fungicides and fate in the environment. Canadian Forestry Technical Report #10. Dept. of Environment, Ottawa.
- Tetra Tech. 1986a. User's Manual for Pollutants of Concern Matrix. Report to U.S. EPA, Region 10, Seattle, WA.
- Tetra Tech. 1986b. Preliminary Investigation: Eagle Harbor, Bainbridge Island, WA. Report to Washington State Department of Ecology, Olympia, WA.
- Woodward and Clyde. 1985. Contaminant data from monitor well sampling on Wyckoff Property on Elliott Bay. Analyzed by Analytical Resources Inc. available through Environmental Protection Agency, Seattle.
- Yake, B. and D. Norton. 1986. Chemical contamination of ground water, intertidal seepage and sediments on and near Wyckoff Company property; Eagle Harbor, Bainbridge Island. Memo to Glynis Stumpf and Dave Bradley, Department of Ecology, Olympia, Washington. 31pp. less attachments.

ACKNOWLEDGMENTS

Many people contributed to the success of this work. Dale Norton assisted in the field work and critically reviewed a draft of this report. Bill Yake reviewed the study design and earlier drafts. Chuck Stoddard and the Wyckoff Company provided access to the site. The Department of Ecology Laboratory at Manchester received and distributed the samples to various laboratories. Roy Arp analyzed the metals. Lauck's Laboratories analyzed for grain size, total organic carbon, and semivolatile organics. Ecology and Environment (Consultants), and Roy Araki of the Manchester Lab reviewed quality assurance data. Will Kendra critically reviewed the manuscript. This work was initiated by Dan Cargill of the Northwest Regional Office of Department of Ecology. I thank all these people and organizations.